Robustness of Multiple Testing Procedures against Dependence
نویسنده
چکیده
An important aspect of multiple hypothesis testing is controlling the significance level, or the level of Type I error. When the test statistics are not independent it can be particularly challenging to deal with this problem, without resorting to very conservative procedures. In this paper we show that, in the context of contemporary multiple testing problems, where the number of tests is often very large, the difficulties caused by dependence are less serious than in classical cases. This is particularly true when the null distributions of test statistics are relatively light-tailed, for example, when they can be based on Normal or Student's t approximations. There, if the test statistics can fairly be viewed as being generated by a linear process, an analysis founded on the incorrect assumption of independence is asymptotically correct as the number of hypotheses diverges. In particular , the point process representing the null distribution of the indices at which statistically significant test results occur is approximately Poisson, just as in the case of independence. The Poisson process also has the same mean as in the independence case, and of course exhibits no clustering of false discoveries. However, this result can fail if the null distributions are particularly heavy-tailed. There clusters of statistically significant results can occur, even when the null hypothesis is correct. We give an intuitive explanation for these disparate properties in light-and heavy-tailed cases, and provide rigorous theory underpinning the intuition. 1. Introduction. Classical properties of simultaneous hypothesis testing, error rate and false-discovery rate are well understood. They have been explored extensively, in both practice and theory, in the context of independent tests. However, for a range of contemporary applications, multiple testing
منابع مشابه
Adaptive False Discovery Rate Control under Independence and Dependence
In the context of multiple hypothesis testing, the proportion π0 of true null hypotheses in the pool of hypotheses to test often plays a crucial role, although it is generally unknown a priori. A testing procedure using an implicit or explicit estimate of this quantity in order to improve its efficency is called adaptive. In this paper, we focus on the issue of false discovery rate (FDR) contro...
متن کاملAdaptive FDR control under independence and dependence
In the context of multiple hypotheses testing, the proportion π0 of true null hypotheses among the hypotheses to test is a quantity that often plays a crucial role, although it is generally unknown. In order to obtain more powerful procedures, recent research has focused on finding ways to estimate this proportion and incorporate it in a meaningful way in multiple testing procedures, leading to...
متن کاملMultivariate Signed-Rank Tests in Vector Autoregressive Order Identification
The classical theory of rank-based inference is essentially limited to univariate linear models with independent observations. The objective of this paper is to illustrate some recent extensions of this theory to time-series problems (serially dependent observations) in a multivariate setting (multivariate observations) under very mild distributional assumptions (mainly, elliptical symmetry; fo...
متن کاملOPTIMUM GENERALIZED COMPOUND LINEAR PLAN FOR MULTIPLE-STEP STEP-STRESS ACCELERATED LIFE TESTS
In this paper, we consider an i.e., multiple step-stress accelerated life testing (ALT) experiment with unequal duration of time . It is assumed that the time to failure of a product follows Rayleigh distribution with a log-linear relationship between stress and lifetime and also we assume a generalized Khamis-Higgins model for the effect of changing stress levels. Taking into account that the...
متن کاملEstimating the Proportion of Nonzero Normal Means under Certain Strong Covariance Dependence by
The proportion of certain type of hypotheses is a key component of adaptive false discovery procedures in multiple testing. To date, a good estimator of the proportion of false null hypotheses under dependence is lacking. For multiple testing normal means, we develop a (uniformly) consistent estimator of the proportion of nonzero normal means when the dependent test statistics follow a joint no...
متن کامل